47 CFR Ch. I (10-1-23 Edition)

MHz bandwidth centered on the frequency at which the highest level radiated emission occurs. If RBW is greater than 3 MHz, the application for certification shall contain a detailed description of the test procedure, the instrumentation employed in the testing, and the calibration of the test setup.

(4) Radiated emissions at or below 960 MHz shall not exceed the emission levels in §15.209.

(5) Emissions from digital circuitry used to enable the operation of the transmitter may comply with the limits in §15.209 provided it can be clearly demonstrated that those emissions are due solely to emissions from digital circuitry contained within the transmitter and the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in 15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the operation of the transmitter, are subject to the limits contained in subpart B of this part. Emissions from these digital circuits shall not be employed in determining the -10 dB bandwidth of the fundamental emission or the frequency at which the highest emission level occurs.

(c) Measurement procedures:

(1) All emissions at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Unless otherwise specified, all RMS average emission levels specified in this section are to be measured utilizing a 1 MHz resolution bandwidth with a one millisecond dwell over each 1 MHz segment. The frequency span of the analyzer should equal the number of sampling bins times 1 MHz and the sweep rate of the analyzer should equal the number of sampling bins times one millisecond. The provision in §15.35(c) that allows emissions to be averaged over a 100 millisecond period does not apply to devices operating under this section. The video bandwidth of the measurement instrument shall not be less than the resolution bandwidth and trace averaging shall not be employed. The RMS average emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

(2) The peak emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

(3) For transmitters that employ frequency hopping, stepped frequency or similar modulation types, the peak emission level measurement, the measurement of the RMS average emission levels, the measurement to determine the center frequency, and the measurement to determine the frequency at which the highest level emission occurs shall be made with the frequency hop or step function active. Gated signals may be measured with the gating active. The provisions of §15.31(c) continue to apply to transmitters that employ swept frequency modulation.

(4) The -10 dB bandwidth is based on measurement using a peak detector, a 1 MHz resolution bandwidth, and a video bandwidth greater than or equal to the resolution bandwidth.

(5) Alternative measurement procedures may be considered by the Commission.

(d) Wideband vehicular radar systems operating in the 23.12–29.0 GHz band are subject to the transition provisions of §15.37(1) through (n).

[70 FR 6775, Feb. 9, 2005, as amended at 82 FR 43870, Sept. 20, 2017]

§15.253 [Reserved]

§ 15.255 Operation within the band 57– 71 GHz.

(a) *General*. Operation under the provisions of this section is not permitted for equipment used on satellites.

(b) *Operation on aircraft*. Operation on aircraft is permitted under the following conditions:

(1) When the aircraft is on the ground.

(2) While airborne, only in closed exclusive on-board communication networks within the aircraft, with the following exceptions:

(i) Equipment shall not be used in wireless avionics intra-communication (WAIC) applications where external structural sensors or external cameras are mounted on the outside of the aircraft structure.

§ 15.253

Federal Communications Commission

(ii) Except as permitted in paragraph (b)(3) of this section, equipment shall not be used on aircraft where there is little attenuation of RF signals by the body/fuselage of the aircraft.

(iii) Field disturbance sensor/radar devices may only operate in the frequency band 59.3-71.0 GHz while installed in passengers' personal portable electronic equipment (e.g., smartphones, tablets) and shall comply with paragraph (b)(2)(i) of this section, and relevant requirements of paragraphs (c)(2) through (c)(4) of this section.

(3) Field disturbance sensors/radar devices deployed on unmanned aircraft may operate within the frequency band 60-64 GHz, provided that the transmitter not exceed 20 dBm peak EIRP. The sum of continuous transmitter offtimes of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds. Operation shall be limited to a maximum of 121.92 meters (400 feet) above ground level.

(c) *Radiated power limits*. Within the 57–71 GHz band, emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):

(1) Devices other than field disturbance sensors shall comply with one of the following power limits, as measured during the transmit interval:

(i) The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm; or

(ii) For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

(A) The provisions in this paragraph (c) for reducing transmit power based on antenna gain shall not require that the power levels be reduced below the limits specified in paragraph (c)(1)(i) of this section.

(B) The provisions of 15.204(c)(2) and (4) that permit the use of different antennas of the same type and of equal or less directional gain do not apply to intentional radiator systems operating under this provision. In lieu thereof, intentional radiator systems shall be certified using the specific antenna(s) with which the system will be marketed and operated. Compliance testing shall be performed using the highest gain and the lowest gain antennas for which certification is sought and with the intentional radiator operated at its maximum available output power level. The responsible party, as defined in §2.909 of this chapter, shall supply a list of acceptable antennas with the application for certification.

(2) Field disturbance sensors/radars shall not exceed -10 dBm peak conducted output power and 10 dBm peak EIRP except that field disturbance sensors/radars that limit their operation to all or part of the specified frequency band may operate without being subject to a transmitter conducted output power limit if they operate in compliance with paragraph (b)(3) of this section or with one or more of the provisions below:

(i) 57.0-59.4 GHz: the peak EIRP level shall not exceed 20 dBm for indoor operation or 30 dBm for outdoor operation;

(ii) 57.0-61.56 GHz: the peak EIRP shall not exceed 3 dBm except that the peak EIRP shall not exceed 20 dBm if the sum of continuous transmitter offtimes of at least two milliseconds equals at least 16.5 milliseconds within any contiguous interval of 33 milliseconds;

(iii) 57.0–64.0 GHz:

(A) The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section;

(B) The peak EIRP shall not exceed 20 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds when operated outdoors:

(1) As part of a temporary or permanently fixed application; or

(2) When being used in vehicular applications to perform specific tasks of

moving something or someone, except for in-cabin applications;

(iv) A field disturbance sensor may operate in any of the modes in the above sub-sections so long as the device operates in only one mode at any time and does so for at least 33 milliseconds before switching to another mode.

(v) 61.0-61.5 GHz: For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

(3) For pulsed field disturbance sensors/radars operating in the 57-64 GHz band that have a maximum pulse duration of 6 ns, the average EIRP shall not exceed 13 dBm and the transmit duty cycle shall not exceed 10% during any 0.3 µs time window. In addition, the average integrated EIRP within the frequency band 61.5-64.0 GHz shall not exceed 5 dBm in any 0.3 µs time window. Peak emissions shall not exceed 20 dB above the maximum permitted average emission limit applicable to the equipment under test. The radar bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna.

(4) The provisions in \$15.35(b) and (c) that require emissions to be averaged over a 100 millisecond period and that limits the peak power to 20 dB above the average limit do not apply to devices operating under paragraphs (c)(2) and (3) of this section.

(d) Limits on spurious emissions. (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.

(2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

47 CFR Ch. I (10-1-23 Edition)

(3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm^2 at a distance of 3 meters.

(4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

(e) Limits on transmitter conducted output power. (1) Except as specified in paragraph (e)(2) of this section, the peak transmitter conducted output power of devices other than field disturbance sensors/radars shall not exceed 500 mW. Depending on the gain of the antenna, it may be necessary to operate the intentional radiator using a lower peak transmitter output power in order to comply with the EIRP limits specified in paragraph (c) of this section.

(2) Devices other than field disturbance sensors/radars with an emission bandwidth of less than 100 megahertz must limit their peak transmitter conducted output power to the product of 500 mW times their emission bandwidth divided by 100 megahertz. For the purposes of this paragraph, emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kilohertz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

(f) Frequency stability. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

(g) Radio frequency radiation exposure. Radio frequency devices operating under the provisions of this part are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 1.1310, 2.1091, and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of

Federal Communications Commission

mobile or portable devices operating under this section must contain a statement confirming compliance with these requirements. Technical information showing the basis for this statement must be submitted to the Commission upon request.

(h) Group installation. Any transmitter that has received the necessary FCC equipment authorization under the rules of this chapter may be mounted in a group installation for simultaneous operation with one or more other transmitter(s) that have received the necessary FCC equipment authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking inputs that permit beam-forming arrays to be realized.

(i) Compliance measurement. Measurement procedures that have been found to be acceptable to the Commission in accordance with §2.947 of this chapter may be used to demonstrate compliance.

(1) For purposes of demonstrating compliance with this section, corrections to the transmitter conducted output power may be made due to the antenna and circuit loss.

(2) Compliance measurements of frequency-agile field disturbance sensors/ radars shall be performed with any related frequency sweep, step, or hop function activated.

[63 FR 42279, Aug. 7, 1998, as amended at 66
FR 7409, Jan. 23, 2001; 68 FR 68547, Dec. 9, 2003; 78 FR 59850, Sept. 30, 2013; 81 FR 79936, Nov. 14, 2016; 83 FR 63, Jan. 2, 2018; 85 FR 18149, Apr. 1, 2020; 88 FR 47394, July 24, 2023]

§15.256 Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz.

(a) Operation under this section is limited to level probing radar (LPR) devices.

(b) LPR devices operating under the provisions of this section shall utilize a dedicated or integrated transmit antenna, and the system shall be installed and maintained to ensure a vertically downward orientation of the transmit antenna's main beam. (c) LPR devices operating under the provisions of this section shall be installed only at fixed locations. The LPR device shall not operate while being moved, or while inside a moving container.

(d) Hand-held applications are prohibited.

(e) Marketing to residential consumers is prohibited.

(f) The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

(2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 5.925–7.250 GHz, 24.05–29.00 GHz, and 75–85 GHz bands under all conditions of operation.

(g) Fundamental emissions limits. (1) All emission limits provided in this section are expressed in terms of Equivalent Isotropic Radiated Power (EIRP).

(2) The EIRP level is to be determined from the maximum measured power within a specified bandwidth.

(i) The EIRP in 1 MHz is computed from the maximum power level measured within any 1-MHz bandwidth using a power averaging detector;

(ii) The EIRP in 50 MHz is computed from the maximum power level measured with a peak detector in a 50-MHz bandwidth centered on the frequency at which the maximum average power level is realized and this 50 MHz bandwidth must be contained within the authorized operating bandwidth. For a RBW less than 50 MHz, the peak EIRP limit (in dBm) is reduced by 20 log(RBW/50) dB where RBW is the resolution bandwidth in megahertz. The RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than the RBW. If the